Low-aberration high-speed-compatible optical delay line
نویسندگان
چکیده
منابع مشابه
High Speed Delay-Locked Loop for Multiple Clock Phase Generation
In this paper, a high speed delay-locked loop (DLL) architecture ispresented which can be employed in high frequency applications. In order to design the new architecture, a new mixed structure is presented for phase detector (PD) and charge pump (CP) which canbe triggered by double edges of the input signals. In addition, the blind zone is removed due to the elimination of reset signal. Theref...
متن کاملTurbulence-aberration correction with high-speed high-gain optical phase conjugation in sodium vapor.
Optical aberrations that are due to high-speed turbulence in the aero-optical regime are corrected with optical phase conjugation based on coherent population trapping in sodium vapor. Experimental measurements of an unheated, forced helium jet in air have demonstrated aberration correction by a factor of 7.8 at a forcing frequency of 18kHz with an optical power gain of 32.
متن کاملDelay performance of high-speed packet switches with low speedup
The speedup of a switch is the factor by which the switch, and hence the memory used in the switch, runs faster compared to the line rate. In high-speed switches, line rates are already touching limits at which memory can operate. In this scenario, it is very important for a switch to run at as low a speedup as possible. In the past, it has been shown that 100% throughput can be achieved for an...
متن کاملEnergy-Delay Tradeoff in Low Power, High Speed Digital Processors
Previous research has introduced novel energy saving techniques such as the use of multiple VDD and VTH transistors, as well as transistor sizing, to limit storage energy and standby power. These techniques have been used to lower the power consumed in the non-critical paths of a design for a given performance specified by the critical path. In this report, a proposal to investigate how dual-su...
متن کاملHigh-speed All- Optical Time Division Multiplexed Node
In future high-speed self-routing photonic networks based on all-optical time division multiplexing (OTDM) it is highly desirable to carry out packet switching, clock recovery and demultplexing in the optical domain in order to avoid the bottleneck due to the optoelectronics conversion. In this paper we propose a self-routing OTDM node structure composed of an all-optical router and demultiplex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Letters
سال: 2020
ISSN: 0146-9592,1539-4794
DOI: 10.1364/ol.397314